skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carr, B J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Poisson's ratio for earth materials is usually assumed to be positive (Vp/Vs > 1.4). However, this assumption may not be valid in the critical zone because near Earth's surface effective pressures are low (<1 MPa), porosity has a wide range (0%–60%), there are significant texture changes (e.g., unconsolidated vs. fractured media), and saturation ranges from 0% to 100%. We present P‐wave (Vp) and S‐wave (Vs) velocities from seismic refraction profiles collected in weathered crystalline environments in South Carolina and Wyoming. Our data show that ∼20% of the subsurface has negative Poisson's ratios (Vp/Vsvalues < 1.4), a conclusion supported by borehole sonic logs. The low Vp/Vsvalues are confined to the fractured bedrock and saprolite. Our data support the hypothesis that weathering‐generated microcracks can produce a negative Poisson's ratio and that Vp/Vsvalues can thus provide insight into important critical zone weathering processes. 
    more » « less
  2. Abstract Weathering processes weaken and break apart rock, freeing nutrients and enhancing permeability through the subsurface. To better understand these processes, it is useful to constrain physical properties of materials derived from weathering within the critical zone. Foliated rocks exhibit permeability, strength and seismic anisotropy–the former two bear hydrological and geomorphological consequences while the latter is geophysically quantifiable. Each of these types of anisotropy are related to rock fabric (fractures and foliation); thus, characterizing weathering‐dependent changes in rock fabric with depth may have a range of implications (e.g., landslide susceptibility, groundwater modeling, and landscape evolution). To better understand how weathering effects rock fabric, we quantify seismic anisotropy in saprolite and weathered bedrock within two catchments underlain by the Precambrian Loch Raven schist, located in Oregon Ridge Park, MD. Using circular geophone arrays and perpendicular seismic refraction profiles, anisotropy versus depth functions are created for material 0–25 m below ground surface (bgs). We find that anisotropy is relatively low (0%–15%) in the deepest material sampled (12–25 m bgs) but becomes more pronounced (29%–33%) at depths corresponding with saprolite and highly weathered bedrock (5–12 m bgs). At shallow soil depths (0–5 m bgs), material is seismically isotropic, indicating that mixing processes have destroyed parent fabric. Therefore, in situ weathering and anisotropy appear to be correlated, suggesting that in‐place weathering amplifies the intrinsic anisotropy of bedrock. 
    more » « less